Quiz 7 Solution

The random variable X has range SX=[0,) with probability density function

fX(x)={exp(x),x00,x<0.

Let Y=12exp(X).  Then Y is itself a random variable.  Note that, since 0<exp(x)1 when x0, the random variable Y has range SY=[1,1).

The first three questions pertain to the random variable X.

1.  True or false?  X is an exponential random variable.

Answer:  true.  By definition an exponential random variable Z has a pdf of the form

fZ(z)={λexp(λz),z0,0,z<0.

for some parameter λ>0.  The pdf of X has this form for λ=1.

2.  True or false?  X is a Gaussian random variable.

Answer: false.  By definition a Gaussian random variable Z has a range SZ=R, and the pdf of Z, given as

fZ(z)=1σ2πexp((zm)22σ2)

is nonzero for all z.   This does not match the pdf of X.

3.  True or false?  X is a gamma random variable.

Answer: true.  By definition a gamma random variable Z has a pdf of the form

fZ(z)={λΓ(α)(λx)α1exp(λx),x00,x<0

for parameters α>0 and λ>0, where Γ(x) is the gamma function.  Setting α=1 and λ=1 gives the pdf for X, since Γ(1)=0!=1.  (In general, the exponential pdf is the special case of the gamma pdf obtained when α=1.)

The last four questions pertain to the random variable Y.

4.  Determine E(Y).

Answer:  E(Y)=E(12exp(X))

=12E(exp(X))

=12exp(x)fX(x)dx

=120exp(x)exp(x)dx

=120exp(2x)dx

=12(12)

=0.

5.  Determine E(Y2).

Answer:  E(Y2)=E((12exp(X))2)

=0(14exp(x)+4exp(2x))exp(x)dx

=0(exp(x)4exp(2x)+4exp(3x))dx

=142+43

=13.

6.  Determine Pr(Y>12).

Answer:  Note the FX(x)=Pr(Xx)=1exp(x) when x0.  We have

Pr(Y>12)=Pr(12exp(X)12)

=Pr(2exp(X)12)

=Pr(exp(X)14)

=Pr(Xln(1/4))

=Pr(Xln(1/4))

=1Pr(X<ln(1/4))

=1FX(ln(1/4))

=1(1exp(ln(1/4)))

=14.

7.  True or false?  Y is uniformly distributed over SY.

Answer:  true.

For ySY, we have

Pr(Yy)=Pr(12exp(X)y)

=Pr(2exp(X)1y)

=Pr(Xln(1y2))

=Pr(Xln(1y2))

=1exp(ln(1y2))

=11y2

=y+12

It follows that fY(y)=ddyFY(y)=12 for all ySY.   Since the pdf is a constant, Y is indeed uniformly distributed.